Peer-reviewed Journal Publications

PI Google Scholar: https://scholar.google.com/citations?hl=en&user=8K3x8szoF1gC
(*equal contribution, #corresponding author)

30. Baidoun, R., Liu, G. & Kim, D.# Recent Advances on the Role of Interfacial Liquids in Electrochemical Reactions. Nanoscale 16, 5903-5925 (2024).

29. Ohri, N., Hua, Y., Baidoun, R. & Kim, D.# Pyrolytic synthesis of carbon-supported single-atom catalysts. Chem Catalysis, 100837 (2023).
28. Baidoun, R. & Kim, D.# Doubling up on supports: Stabilizing iridium for oxygen evolution. Chem Catalysis 3, 100696 (2023).
27. Sun, E.*, Zhai, S.*, Kim, D.*, Gigantino, M., Haribal, V., Dewey, O. S., Williams, S. M., Wan, G., Nelson, A., Marin-Quiros, S., Martis, J., Zhou, C., Oh, J., Randall, R., Kessler, M., Kong, D., Rojas, J., Tong, A., Xu, X., Huff, C., Pasquali, M., Gupta, R., Cargnello, M. & Majumdar, A. A semi-continuous process for co-production of CO2-free hydrogen and carbon nanotubes via methane pyrolysis. Cell Reports Physical Science 4 (2023).

26. Louisia, S.*, Kim, D.*, Li, Y., Gao, M., Yu, S., Roh, I. & Yang, P. The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO2. Proc. Natl. Acad. Sci. U. S. A. 119, 1–9 (2022).
[highlighted in Nature Energy, Monitoring microenvironments]

25. Yu, S.*, Kim, D.*, Qi, Z., Louisia, S., Li, Y., Somorjai, G.A., & Yang, P. Nanoparticle Assembly Induced Ligand Interactions for Enhanced Electrocatalytic CO2 Conversion. J. Am. Chem. Soc., 143, 19919–19927 (2021).
24. Kim, D., Zhou, C., Zhang, M. & Cargnello, M. Voltage cycling process for the electroconversion of biomass-derived polyols. Proc. Natl. Acad. Sci. 118, e2113382118 (2021).

23. Kim, D.*, Yu, S.*, Zheng, F., Roh, I., Li, Y., Louisia, S., Qi, Z., Somorjai, G.A., Frei, H., Wang, L.W. & Yang, P. Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nat. Energy 5,1032-1042(2020).
22. Li, Y.*, Kim, D.*, Louisia, S., Xie, C., Kong, Q., Yu, S., Lin, T., Aloni, S., Fakra, S. C. & Yang, P. Electrochemically scrambled nanocrystals are catalytically active for CO2-to-multicarbons. Proc. Natl. Acad. Sci. 117, 9194-9201 (2020).
21. Kim, D. & Cargnello, M. Formic acid oxidation boosted by Rh single atoms. Nat. Nanotechnol. 1–2 (2020).
20. Xie, C.*, Niu, Z.*, Kim, D.*, Li, M. & Yang, P. Surface and Interface Control in Nanoparticle Catalysis. Chem. Rev. 120, 1184–1249 (2020).

19. Ross, M. B., De Luna, P., Li, Y., Dinh, C. T., Kim, D., Yang, P. & Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).
18. Ross, M. B., Li, Y., De Luna, P., Kim, D., Sargent, E. H. & Yang, P. Electrocatalytic Rate Alignment Enhances Syngas Generation. Joule 3, 257–264 (2019).

17. Wong, A. B.*, Bekenstein, Y.*, Kang, J., Kley, C. S., Kim, D., Gibson, N. A., Zhang, D., Yu, Y., Leone, S. R., Wang, L., Alivisatos, A. P. & Yang, P. Strongly Quantum Confined Colloidal Cesium Tin Iodide Perovskite Nanoplates: Lessons for Reducing Defect Density and Improving Stability. Nano Lett. 18, 2060–2066 (2018).

16. Becknell, N.*, Son, Y.*, Kim, D., Li, D., Yu, Y., Niu, Z., Lei, T., Sneed, B. T., More, K. L., Markovic, N. M., Stamenkovic, V. R. & Yang, P. Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts. J. Am. Chem. Soc. 139, 11678-11681 (2017).
15. Kim, D., Kley, C. S., Li, Y., & Yang, P. Copper Nanoparticle Ensembles for Selective Electroreduction of CO2 to C2-C3 products. Proc. Natl. Acad. Sci. 114, 10560-10565 (2017).
[highlighted in 17 news outlets including c&en, EurekAlert!, LBNL news, and Phys.org]
14. Ross, M. B., Dinh, C. T., Li, Y., Kim, D., De Luna, P., Sargent, E. H. & Yang, P. Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2. J. Am. Chem. Soc. 139, 9359–9363 (2017).
13. Kim, D.*, Xie, C.*, Becknell, N., Yu, Y., Karamad, M., Chan, K., Crumlin, E. J., Norskov, J. K. & Yang, P. Electrochemical Activation of CO2 through Atomic Ordering Transformations of AuCu Nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017).
12. Niu, Z.*, Cui, F.*, Yu, Y., Becknell, N., Sun, Y., Khanarian, G., Kim, D., Dou, L., Dehestani, A., Schierle-Arndt, K. & Yang, P. Ultrathin Epitaxial Cu@Au Core–Shell Nanowires for Stable Transparent Conductors. J. Am. Chem. Soc. 139, 7348–7354 (2017).
11. Kim, D., Becknell, N., Yu, Y. & Yang, P. Room-Temperature Dynamics of Vanishing Copper Nanoparticles Supported on Silica. Nano Lett. 17, 2732–2737 (2017).
10. Li, Y.*, Cui, F.*, Ross, M. B., Kim, D., Sun, Y. & Yang, P. Structure-Sensitive CO2 Electroreduction to Hydrocarbons on Ultrathin 5-fold Twinned Copper Nanowires. Nano Lett. 17, 1312–1317 (2017).
9. Choi, K. M.*, Kim, D.*, Rungtaweevoranit, B., Trickett, C. A., Barmanbek, J. T. D., Alshammari, A. S., Yang, P. & Yaghi, O. M. Plasmon-Enhanced Photocatalytic CO2 Conversion within Metal–Organic Frameworks under Visible Light. J. Am. Chem. Soc. 139, 356–362 (2017).

8. Kong, Q.*, Kim, D.*, Liu, C., Yu, Y., Su, Y., Li, Y. & Yang, P. Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction. Nano Lett. 16, 5675–5680 (2016).
7. Niu, Z.*, Becknell, N.*, Yu, Y., Kim, D., Chen, C., Kornienko, N., Somorjai, G. A. & Yang, P. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 15, 1188–1194 (2016).
6. Cao, Z.*, Kim, D.*, Hong, D., Yu, Y., Xu, J., Lin, S., Wen, X., Nichols, E. M., Jeong, K., Reimer, J. A., Yang, P. & Chang, C. J. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction. J. Am. Chem. Soc. 138, 8120–8125 (2016).

5. Kornienko, N.*, Zhao, Y.*, Kley, C. S., Zhu, C., Kim, D., Lin, S., Chang, C. J., Yaghi, O. M. & Yang, P. Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).
4. Lin, S.*, Diercks, C. S.*, Zhang, Y. B.*, Kornienko, N., Nichols, E. M., Zhao, Y., Paris, A. R., Kim, D., Yang, P., Yaghi, O. M. & Chang, C. J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).
[highlighted in 14 news outlets including materialstoday, Smithsonian magazine, EurekAlert!, and Phys.org]
3. Kim, D., Sakimoto, K. K., Hong, D. & Yang, P. Artificial Photosynthesis for Sustainable Fuel and Chemical Production. Angew. Chemie Int. Ed. 54, 3259–3266 (2015).

2. Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).
[highlighted in 15 news outlets including EurekAlert!, LBNL news, Phys.org, ScienceDaily, and nanowerk]

1. Kim, D., Yang, S. J., Kim, Y. S., Jung, H. & Park, C. R. Simple and cost-effective reduction of graphite oxide by sulfuric acid. Carbon 50, 3229–3232 (2012).

Patents

4. U.S. Provisional Patent Application No. 63/480,875 – Semi-Continuous Process for Co-Production of CO2-Free Hydrogen and High Value Carbon via Hydrocarbon Pyrolysis
3. U.S. Patent App. 17498260 – Nanoparticle-Ligand Composite Catalyst Including a Pseudocapacitive Interface for Carbon Dioxide Electrolysis (related publication Nat. Energy 5,1032-1042(2020))
2. U.S. Patent No. 11047055 – Method of depositing nanoparticles on an array of nanowires (related publication Nano Lett. 16, 5675–5680 (2016))
1. U.S. Patent No. 10704153 – Copper nanoparticle structures for reduction of carbon dioxide to multicarbon products (related publication PNAS 114, 10560-10565 (2017))